История ледникового периода.
Причины возникновения ледниковых периодов - космические: изменение активности Солнца, изменение положения Земли относительно Солнца. Планетарные циклы: 1). 90 - 100 тысячелетние циклы изменения климата в результате изменения эксцентриситета земной орбиты; 2). 40 - 41 тысячелетние циклы изменения наклона земной оси от 21,5 град. до 24,5 град.; 3). 21 - 22 тысячелетние циклы изменения ориентации земной оси (прецессия). Значительное влияние оказывают результаты вулканической активности - затемнение земной атмосферы пылью и пеплом.
Древнейшее оледенение было 800 - 600 млн. лет назад в Лаврентийский период Докембрийской эры. 
Около 300 млн. лет назад произошло Пермокарбоновое оледенение в конце Каменноугольного - начале Пермского периода Палеозойской эры. В это время на планете Земля был единственный суперконтинент Пангея. Центр континента находился в районе экватора, край достигал южного полюса. Ледниковые периоды сменялись потеплениями, а те - снова похолоданиями. Такие смены климата длились с 330 по 250 млн. лет назад. За это время Пангея сместилась к северу. Около 200 млн. лет назад на Земле надолго установился ровный тёплый климат.
Около 120 - 100 млн. лет назад в Меловой период Мезозойской эры от материка Пангея откололся материк Гондвана и остался в Южном полушарии.
В начале Кайнозойской эры, в раннем Палеогене в эпоху Палеоцен - ок. 55 млн. лет назад произошло общее тектоническое поднятие земной поверхности на 300 - 800 метров, начался раскол Пангеи и Гондваны на континенты и общепланетное похолодание. 49 - 48 млн. лет назад в начале эпохи Эоцен образовался пролив между Австралией и Антарктидой. Около 40 млн. лет назад начали образовываться горные материковые ледники в Западной Антарктиде. В течение всего Палеогенового периода происходило изменение конфигурации океанов, образовался Северный Ледовитый океан, Северо-Западный проход, моря Лабрадорское и Баффина, Норвежско-Гренландский бассейн. Вдоль северных берегов Атлантического и Тихого океанов поднялись высокие глыбовые горы, развился подводный Срединно-Атлантический хребет.
На границе Эоцена и Олигоцена - около 36 - 35 млн. лет назад Антарктида переместилась к южному полюсу, отделилась от Южной Америки и оказалась отрезана от тёплых экваториальных вод. 28 - 27 млн. лет назад в Антарктиде образовались сплошные покровы горных ледников и затем, на протяжении Олигоцена и Миоцена ледниковый щит постепенно заполнил всю Антарктиду. Материк Гондвана окончательно раскололся на континенты: Антарктида, Австралия, Африка, Мадагаскар, Индостан, Южная Америка.
15 млн. лет назад началось оледенение в Северном Ледовитом океане - плавающие льды, айсберги, временами сплошные ледяные поля.
10 млн. лет назад ледник в Южном полушарии вышел за пределы Антарктиды в океан и около 5 млн. лет назад достиг своего максимума, закрыв ледяным щитом океан до берегов Южной Америки, Африки, Австралии. Плавучие льды достигали тропиков. В это же время, в эпоху Плиоцен ледники стали появляться в горах материков Северного полушария (Скандинавские, Уральские, Памиро-Гималайские, Кордильеры) и 4 млн. лет назад заполнили острова Канадского Арктического архипелага и Гренландию. Северная Америка, Исландия, Европа, Северная Азия покрылись льдом 3 - 2,5 млн. лет назад. Максимума Позднекайнозойский ледниковый период достиг в эпоху Плейстоцен, около 700 тыс. лет назад. Этот же ледниковый период продолжается и в наши дни.
Итак, 2 - 1,7 млн. лет назад начался Верхний Кайнозой - Четвертичный период. Ледники в Северном полушарии на суше достигли средних широт, в Южном материковый лёд достиг края шельфа, айсберги до 40-50 град. ю. ш. В этот период наблюдалось около 40 стадий оледенения. Наиболее значительными были: Плестоценовое оледенение I - 930 тыс. лет назад; Плестоценовое оледенение II - 840 тыс. лет назад; Дунайское оледенение I - 760 тыс. лет назад; Дунайское оледенение II - 720 тыс. лет назад; Дунайское оледенение III - 680 тыс. лет назад.
В эпоху Голоцен на Земле было четыре оледенения, получивших названия по долинам 
швейцарских речек, где они были впервые изучены. Самое древнее - оледенение Гюнц (в Сев. Америке - Небраскское) 600 - 530 тыс. лет назад. Максимума Гюнц I достиг 590 тыс. лет назад, пик Гюнц II был 550 тыс. лет назад. Оледенение Миндель (Канзасское) 490 - 410 тыс. лет назад. Максимума Миндель I достиг 480 тыс. лет назад, пик Миндель II был 430 тыс. лет назад. Затем наступило Великое межледниковье, длившееся 170 тысяч лет. В этот период, казалось, вернулся мезозойский тёплый климат, а ледниковый период закончился навсегда. Но он вернулся.
Началось оледенение Рисс (Иллинойское, Заальское, Днепровское) 240 - 180 тыс. лет назад, наиболее мощное из всех четырёх. Максимума Рисс I достиг 230 тыс. лет назад, пик Рисс II был 190 тыс. лет назад. Толщина ледника в Гудзоновом заливе достигала 3,5 километра, край ледника в горах Сев. Америки доходил почти до Мексики, на равнине заполнил котловины Великих озёр и дошёл до р. Огайо, прошёл на юг по Аппалачам и вышел к океану в районе южной части о. Лонг-Айленд. В Европе ледник заполнил всю Ирландию, Бристольский залив, Ла-Манш по 49 град. с. ш., Северное море по 52 град. с. ш., проходил по Голландии, югу Германии, занял всю Польшу до Карпат, Северную Украину, спускался языками по Днепру до порогов, по Дону, по Волге до Ахтубы, по Уральским горам и далее шёл по Сибири к Чукотке.
Затем наступило новое межледниковье, продолжавшееся более 60 тысяч лет. Его максимум пришёлся на 125 тыс. лет назад. В Центральной Европе в это время были субтропики, росли влажные листопадные леса. Впоследствии они сменились хвойными лесами и сухими прериями.
115 тыс. лет назад наступило последнее историческое оледенение Вюрм (Висконсинское, Московское). Оно окончилось примерно 10 тыс. лет назад. Ранний Вюрм достиг максимума ок. 110 тыс. лет назад и окончился ок. 100 тыс. лет назад. Крупнейшие ледники покрыли Гренландию, Шпицберген, Канадский Арктический архипелаг. 100 - 70 тыс. лет назад на Земле царило межледниковье. Средний Вюрм - ок. 70 - 60 тыс. лет назад, был гораздо слабее Раннего и тем более Позднего. Последняя ледниковая эпоха - Поздний Вюрм была 30 - 10 тыс. лет назад. Максимум оледенения пришёлся на период 25 - 18 тыс. лет назад. 
Стадия наибольшего оледенения в Европе называется Эгга I - 21-17 тыс. лет назад. За счёт накопления воды в ледниках уровень Мирового океана понизился на 120 - 100 метров ниже современного. 5% всей воды на Земле было в ледниках. Около 18 тыс. лет назад ледник в Сев. Америке дошёл до 40 град. с. ш. и о-ва Лонг-Айленд. В Европе ледник дошёл до линии: о. Исландия - о. Ирландия - Бристольский залив - Норфолк - Шлезвиг - Померания - Сев.Белоруссия - окрестности Москвы - Коми - Средний Урал по 60 град. с. ш. - Таймыр - плато Путорана - хребет Черского - Чукотка. Из-за понижения уровня моря суша в Азии находилась севернее Новосибирских о-вов и в северной части моря Беринга - "Берингия". Обе Америки соединил Панамский перешеек, перекрывший сообщение Атлантического океана с Тихим, в результата чего образовалось мощное течение Гольфстрим. В средней части Атлантического океана от Америки до Африки было множество островов и самый крупный среди них - о-в Атлантида. Северная оконечность этого острова была на широте г. Кадис (37 град.с.ш.). Архипелаги Азоры, Канары, Мадейра, Зелёного Мыса - затопленные вершины окраинных хребтов. Льды и полярные фронты с севера и юга максимально близко подошли к экватору. Вода в Средиземном море была на 4 град. С холоднее современной. Течение Гольфстрим, обогнув Атлантиду, оканчивалось у берегов Португалии. Температурный градиент был больше, ветры и течения сильнее. Кроме того, существовали обширные горные оледенения в Альпах, в Тропической Африке, горах Азии, в Аргентине и Тропической Юж.Америке, на Новой Гвинее, Гавайях, на Тасмании, в Новой Зеландии и даже в Пиренеях и горах сев.-зап. Испании. Климат в Европе был полярный и умеренный, растительность - тундра, лесотундра, холодные степи, тайга.
Стадия Эгга II была 16 - 14 тыс. лет назад. Началось медленное отступание ледника. При этом у его края образовывалась система ледниково-подпрудных озёр. Ледники толщиной до 2 - 3 километров своей массой придавили и опустили материки в магму и этим приподняли океаническое дно, образовались срединно-океанические хребты.
Около 15 - 12 тыс. лет назад возникла цивилизация "атлантов" на острове, обогреваемом течением Гольфстрим. "Атланты" создали государство, армию, имели владения в Сев.Африке до Египта.
Стадия Раннедриасовая (Лужская) 13,3 - 12,4 тыс. лет назад. Продолжалось медленное отступание ледников. Около 13 тыс. лет назад растаял ледник в Ирландии.
Стадия Тромсё-Люнген (Ра; Бёллинг) 12,3 - 10,2 тыс. лет назад. Около 11 тыс. лет назад 
растаял ледник на Шетландских о-вах (последний в Великобритании), в Новой Шотландии и на о. Ньюфаундленд (Канада). 11 - 9 тыс. лет назад началось резкое поднятие уровня Мирового океана. При освобождении от нагрузки ледника началось поднятие суши и опускание дна океанов, тектонические изменения земной коры, землетрясения, извержения вулканов, наводнения. От этих катаклизмов погибла и Атлантида около 9570 г. до н.э. Погибли основные центры цивилизации, города, большинство населения. Оставшиеся "атланты" частью деградировали и одичали, частью вымерли. Возможными потомками "атлантов" было племя "гуанчи" на Канарских о-вах. Сведенья об Атлантиде сохранили египетские жрецы и рассказали о ней греческому аристократу и законодателю Солону ок. 570 г. до н.э. Повествование Солона переписал и донёс до потомков философ Платон ок. 350 г. до н.э.
Стадия Пребореальная 10,1 - 8,5 тыс. лет назад. Началось глобальное потепление климата. В Азово-Черноморском регионе произошла регрессия моря (уменьшение площади) и опреснение воды. 9,3 - 8,8 тыс. лет назад растаял ледник в Белом море и Карелии. Около 9 - 8 тыс. лет назад от льда освободились фьорды Баффиновой Земли, Гренландии, Норвегии, на 2 - 7 километров от берега отступил ледник на острове Исландия. 8,5 - 7,5 тыс. лет назад растаял ледник на Кольском и Скандинавском полуостровах. Но потепление шло неровно, в Позднем Голоцене было 5 похолоданий. Первое - 10,5 тыс. лет назад, второе - 8 тыс. лет назад.
7 - 6 тыс. лет назад ледники в полярных областях и горах приняли, в основном, современные очертания. 7 тыс. лет назад на Земле был климатический оптимум (наиболее высокая средняя температура). Современная средняя глобальная температура ниже на 2 град.С, и если она опустится ещё на 6 град.С наступит новый ледниковый период.
Около 6,5 тыс. лет назад локализовался ледник на п-ове Лабрадор в горах Торнгат. Примерно 6 тыс. лет назад окончательно затонула Берингия и исчез сухопутный "мост" между Чукоткой и Аляской. Третье похолодание в Голоцене случилось 5,3 тыс. лет назад.
Около 5 000 лет назад образовались цивилизации в долинах рек Нил, Тигр и Евфрат, Инд и начался современный исторический период на планете Земля. 4000 - 3500 лет назад уровень Мирового океана стал равен современному уровню. Четвертое похолодание в Голоцене было около 2800 лет назад. Пятое - "малый ледниковый период" в 1450 - 1850 гг. с минимумом ок. 1700 г. Глобальная средняя температура была ниже современной на 1 град.С. Стояли суровые зимы, холодное лето в Европе, Сев. Америке. Замерзал залив в Нью-Йорке. Сильно увеличились горные ледники в Альпах, на Кавказе, на Аляске, в Новой Зеландии, Лапландии и даже на Эфиопском нагорье.
В настоящее время на Земле продолжается межледниковый период, но планета продолжает свой космический путь и глобальные изменения и превращения климата неизбежны.
Днепровское оледенение
 было максимальным в среднем плейстоцене (250-170 или 110 тыс. лет назад). Оно состояло из двух или трех стадий.
Иногда последнюю стадию Днепровского оледенения выделяют в самостоятельное московское оледенение (170-125 или 110 тыс. лет назад), а разделеющий их период относительно теплого времени рассматривают как одинцовское межледниковье.
В максимальную стадию этого оледенения значительная часть Русской равнины была занята ледниковым покровом, который узким языком по долине Днепра проникал на юг до устья р. Орели. На большей части данной территории существовала многолетняя мерзлота, а среднегодовая температура воздуха была тогда не выше -5-6°С.
На юго-востоке Русской равнины в среднем плейстоцене произошло так называемое «раннехазарское» повышение уровня Каспийского моря на 40-50 м, которое состояло из нескольких фаз. Их точная датировка неизвестна. 
Микулинское межледниковье
Вслед за днепровским оледенением последовало (125 или 110-70 тыс. лет назад). В это время в центральных районах Русской равнины зима была значительно мягче, чем сейчас. Если в настоящее время средние температуры января близки к -10°С, то в микулинское межледниковье они не опускались ниже -3°С. 
Микулинскому времени соответствовало так называемое «позднехазарское» повышение уровня Каспийского моря. На севере Русской равнины отмечалось синхронное повышение уровня Балтийского моря, которое соединялось тогда с Ладожским и Онежским озерами и, возможно, Белым морем, а также Северного Ледовитого океана. Общее колебание уровня мирового океана между эпохами оледенения и таяния льдов составляло 130-150 м.
Валдайское оледенение
После микулинского межледниковья наступило
,
состоящее из ранневалдайского или тверского (70-55 тыс. лет назад) и поздневалдайского или осташковского (24-12:-10 тыс. лет назад) оледенений, разделенных средневалдайским периодом неоднократных (до 5) колебаний температуры, во время которых климат был гораздо холоднее современного (55-24 тыс. лет назад).
На юге Русской платформы раннему валдаю отвечает значительное «аттельское» понижение – на 100-120 метров – уровня Каспийского моря. Вслед за ним последовало «раннехвалынское» повышение уровня моря примерно на 200 м (на 80 м выше первоначальной отметки). Согласно расчетам А.П. Чепалыги (Chepalyga,т1984), поступление влаги в Каспийский бассейн верхнехвалынского времени превышало ее потери приблизительно на 12 куб. км в год.
После «раннехвалынского» повышения уровня моря последовало «енотаевское» понижение уровня моря, а затем вновь «позднехвалынское» повышение уровня моря примерно на 30 м относительно его первоначального положения. Максимум позднехвалынской трансгрессии пришелся, по данным Г.И. Рычагова, на конец позднего плейстоцена (16 тыс. лет назад). Позднехвалынский бассейн характеризовался температурами водной толщи, несколько ниже современных.
Новое понижение уровня моря происходило довольно быстро. Оно достигло максимума (50 м) в самом начале голоцена (0,01-0 млн. лет назад), около 10 тысяч лет назад, и сменилось последним – «новокаспийским» повышением уровня моря примерно на 70 м около 8 тысяч лет назад.
Примерно такие же колебания поверхности воды происходили в Балтийском море и на Северном Ледовитом океане. Общее колебание уровня мирового океана между эпохами оледенения и таяния льдов составляло тогда 80-100 м.
Согласно результатам радиоизотопного анализа более чем 500 различных геологических и биологических образцов, взятых на юге Чили, средние широты на западе Южного полушария испытывали потепления и похолодания в то же самое время, что и средние широты на западе Северного полушария.
Раздел "
Мир в плейстоцене. Великие оледенения и исход с Гипербореи
"
/
Одиннадцать оледенений четвертичного
 периода и ядерные войны
© А.В. Колтыпин, 2010
Мы во власти осени, и становится все холоднее. Не движемся ли мы к ледниковому периоду, интересуется один из читателей.
Быстротечное датское лето позади. Листья опадают с деревьев, птицы улетают на юг, становится темнее и, конечно, холоднее тоже.
Наш читатель Ларс Петерсен (Lars Petersen) из Копенгагена начал готовиться к холодным дням. И он хочет знать, насколько серьезно ему нужно подготовиться.
«Когда начинается следующий ледниковый период? Я узнал, что ледниковые и межледниковые периоды сменяют друг друга регулярно. Так как мы живем в межледниковье, логично предположить, что впереди нас ждет следующий ледниковый период, не так ли?» — пишет он в письме в раздел «Спроси науку» (Spørg Videnskaben).
Мы в редакции вздрагиваем при мысли о холодной зиме, которая подстерегает нас на том конце осени. Мы тоже с удовольствием узнали бы, не на пороге ли мы ледникового периода.
До следующего ледникового периода еще далеко
Поэтому мы адресовали преподавателю Центра фундаментальных исследований льда и климата при Копенгагенском университете Суне Расмуссену (Sune Olander Rasmussen).
Суне Расмуссен изучает холод и получает информацию о погоде прошлого, буря гренландские ледники и айсберги. Кроме того, он может использовать свои знания для того, чтобы исполнять роль «предсказателя ледниковых периодов».
«Для того, чтобы наступил ледниковый период, должно совпасть несколько условий. Мы не можем точно предсказать, когда начнется ледниковый период, но даже если бы человечество не влияло дальше на климат, наш прогноз таков, что условия для него сложатся в лучшем случае через 40 — 50 тысяч лет», — успокаивает нас Суне Расмуссен.
Раз уж мы все равно разговариваем с «предсказателем ледникового периода», мы можем получить и еще кое-какую информацию, о каких это «условиях» идет речь, чтобы немного больше разобраться в том, что же такое на самом деле ледниковый период.
Вот что такое ледниковый период
Суне Расмуссен рассказывает, что во время последнего ледникового периода средняя температура на земле была на несколько градусов ниже, чем сегодня, и что климат на более высоких широтах был холоднее.
Большая часть северного полушария была покрыта массивными ледяными покровами. Например, Скандинавия, Канада и некоторые другие части Северной Америки были покрыты трехкилометровым ледяным панцирем.
Огромный вес ледяного покрова вдавил земную кору на километр внутрь Земли.
Ледниковые периоды дольше, чем межледниковье
Однако 19 тысяч лет назад начали происходить изменения в климате.
Это значило, что Земля постепенно становилась все теплее, и в течение следующих 7 000 лет освободилась от холодной хватки ледникового периода. После этого началось межледниковье, в котором мы сейчас и находимся.
Контекст
Новый ледниковый период? Не скоро
The New York Times 10.06.2004Ледниковый период
Українська правда 25.12.2006 В Гренландии последние остатки панциря сошли очень резко 11 700 лет назад или если быть точным 11 715 лет назад. Об этом свидетельствуют исследования Суне Расмуссена и его коллег.Значит, с момента последнего ледникового периода прошло 11 715 лет, и это совершенно нормальная длина межледниковья.
«Забавно, что мы обычно рассматриваем именно ледниковый период как "событие", хотя на самом деле все как раз наоборот. Средний ледниковый период длится 100 тысяч лет, тогда как межледниковье продолжается от 10 до 30 тысяч лет. То есть, Земля чаще находится в ледниковом периоде, чем наоборот».
«Пара последних межледниковых периодов длилась всего примерно по 10 тысяч лет, что объясняет широко распространенное, но ошибочное мнение, что наш нынешний межледниковый период приближается к концу», — говорит Суне Расмуссен.
Три фактора влияют на возможность начала ледникового периода
То, что Земля погрузится в новый ледниковый период через 40-50 тысяч лет, зависит от того, что у орбиты вращения Земли вокруг Солнца есть небольшие вариации. Вариации определяют, какое количество солнечного света на какие широты попадает, и тем самым влияет на то, насколько там тепло или холодно.
Это открытие сделал сербский геофизик Милутин Миланкович почти 100 лет назад, и поэтому оно известно под названием Циклы Миланковича.
Циклы Миланковича это:
1. Орбита вращения Земли вокруг Солнца, которая изменяется циклически примерно раз в 100 000 лет. Орбита превращается из почти круглой в более эллиптическую, а затем обратно. Из-за этого расстояние до Солнца изменяется. Чем дальше Земля от Солнца, тем меньше солнечного излучения получает наша планета. Кроме того, когда меняется форма орбиты, меняется и длина времен года.
2. Наклон земной оси, который колеблется между 22 и 24,5 градусами по отношению к орбите вращения вокруг Солнца. Этот цикл охватывает примерно 41 000 лет. 22 или 24.5 градуса — кажется не такая уж существенная разница, но наклон оси очень сильно влияет на выраженность различных времен года. Чем больше Земля наклонена, тем больше разница между зимой и летом. В настоящий момент наклон земной оси составляет 23,5 и он уменьшается, что означает, что различия между зимой и летом будут в ближайшие тысячи лет снижаться.
3. Направление земной оси относительно пространства. Направление изменяется циклически с периодом в 26 тысяч лет.
«Комбинация этих трех факторов определяет, есть ли предпосылки к началу ледникового периода. Практически невозможно представить, как происходит взаимодействие этих трех факторов, но с помощью математических моделей мы можем рассчитать, сколько солнечного излучения получают определенные широты в определенное время года, а также получали в прошлом и будут получать в будущем», — говорит Суне Расмуссен.
Снег летом приводит к ледниковому периоду
В особенности важную роль в этом контексте играют температуры летом.
Миланкович понял, что, чтобы была предпосылка для начала ледникового периода, лето в северном полушарии должно быть холодным.
Если зимы снежные, и большая часть северного полушария покрыта снегом, то температуры и количество солнечных часов летом определяют, будет ли снегу позволено остаться на все лето.
«Если снег летом не тает, то в Землю проникает мало солнечного света. Остальное отражается обратно в космос белоснежным покрывалом. Это усугубляет охлаждение, которое началось из-за изменения орбиты вращения Земли вокруг Солнца», — рассказывает Суне Расмуссен.
«Дальнейшее же охлаждение приносит еще больше снега, который еще больше снижает количество абсорбированного тепла, и так далее, до тех пор, пока не начнется ледниковый период», — продолжает он.
Точно так же период с жаркими летами приводит к тому, что ледниковый период заканчивается. Тогда жаркое солнце растапливает лед достаточно для того, чтобы солнечный свет вновь мог попадать на темные поверхности, вроде почвы или моря, которые абсорбируют его и нагревают Землю.
Люди оттягивают следующий ледниковый период
Еще один фактор, который имеет значение для возможности начала ледникового периода — это количество углекислого газа в атмосфере.
Так же, как снег, отражающий свет, усиливает образование льда или ускоряет его таяние, повышение содержания углекислого газа в атмосфере от 180 ppm до 280 ppm (миллионных долей) способствовало выведению Земли из последнего ледникового периода.
Однако с того момента, как началась индустриализация, люди все время занимаются дальнейшим повышением доли углекислого газа, так что сейчас она почти 400 ppm.
«У природы ушло 7 000 лет, чтобы после окончания ледникового периода поднять долю углекислого газа на 100 ppm. Люди сумели сделать то же самое всего за 150 лет. Это имеет большое значение для того, сможет ли Земля вступить в новый ледниковый период. Это очень существенное влияние, которое означает не только то, что в настоящий момент не может начаться ледниковый период», — говорит Суне Расмуссен.
Мы благодарим Ларса Петерсена за хороший вопрос и посылаем по-зимнему серую футболку в Копенгаген. Также мы благодарим Суне Расмуссена за хороший ответ.
А еще мы призываем наших читателей присылать больше научных вопросов на [email protected]
А ты знал?
Ученые всегда говорят о ледниковом периоде лишь в северном полушарии планеты. Причина в том, что в южном полушарии слишком мало суши, на которой может лежать массивный слой снега и льда.
За вычетом Антарктиды, вся южная часть южного полушария покрыта водой, которая не обеспечивает хороших условий для возникновения толстого ледяного панциря.
Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.
1,8 миллионов лет назад начался четвертичный (антропогенный) период геологической истории земли продолжающийся и поныне. Расширялись бассейны рек. Шло быстрое развитие фауны млекопитающихся, особенно мастодонтов (которые позднее вымрут, как и многие другие древние виды животных), копытных и высших обезьян. В этот геологический период истории земли появляется человек (отсюда и слово антропогенный в названии этого геологического периода).
На четвертичный период приходится резкое изменение климата на всей Европейской части России. Из теплого и влажного средиземноморского, он превратился в умеренно-холодный, а затем и в холодно-арктический. Это привело к оледенению. Льды накапливались на Скандинавском полуострове, в Финляндии, на Кольском полуострове и растекались к югу.
Окский ледник своим южным краем покрыл и территорию современного Каширского района, в том числе и наш край. Первое оледенение было самым холодным, древесная растительность в районе Оки исчезла почти полностью. Продержался ледник недолго. Первое четвертичное оледенение достигло долины Оки, отчего и получило наименование «Окского оледенения». Ледник оставил моренные отложения, в которых преобладают валуны местных осадочных пород.
Но такие благоприятные условия снова сменил ледник. Оледенение было планетарного масштаба. Началось грандиозное днепровское оледенение. Толщина Скандинавского ледникового щита достигала 4-х километров. Ледник двинулся через Балтику в Западную Европу и Европейскую часть России. Границы языков днепровского оледенения проходили в районе современного Днепропетровска и почти достигли Волгограда.
  Мамонтовая фауна
 | 
Климат снова потеплел и стал средиземноморским. На месте ледников распространилась теплолюбивая и влаголюбивая растительность: дуб, бук, граб и тис, а также липа, ольха, береза, ель и сосна, орешник. В болотах росли папоротниковые, характерные для современной Южной Америки. Началась перестройка речной системы и формирование четвертичных террас в долинах рек. Этот период получил название межледниковый окско-днепровский век.
Ока послужила своеобразным барьером для продвижения ледяных полей. По мнению ученых, правобережье Оки, т.е. наш край, не превратился в сплошную ледяную пустыню. Здесь были поля льдов, чередуемые с промежутками протаявших возвышенностей, между которыми текли реки из талых вод и скапливались озера.
Потоки льда днепровского оледенения принесли в наш край ледниковые валуны из Финляндии и Карелии. Долины старых рек заполнились среднеморенными и флювиогляциальными отложениями. Вновь потеплело, и ледник стал таять. Потоки талых вод устремились на юг по руслам новых рек. В этот период формируются третьи террасы в речных долинах. Во впадинах образовывались большие озера. Климат был умеренно холодным.
В нашем крае господствовали лесостепная растительность с преобладанием хвойных и березовых лесов и больших участков степей, покрытых полынью, лебедой, злаками и разнотравьем.
Межстадиальная эпоха была короткой. Ледник вновь вернулся в Подмосковье, но не достиг Оки, остановившись недалеко от южной окраины современной Москвы. Поэтому это третье оледенение получило название Московского. Некоторые языки ледника достигали долины Оки, но до территории современного Каширского района они не дошли. Климат был суровым, и ландшафт нашего края становится близким к степной тундре. Леса почти исчезают и их места занимают степи.
Наступило новое потепление. Реки снова углубляли свои долины. Сформировались вторые террасы рек, изменилась гидрография Подмосковья. Именно в тот период образовалась современная долина и бассейн Волги, впадающей в Каспийское море. Ока, а с ней и наша речка Б. Смедва и ее притоки, вошли в Волжский речной бассейн.
Данный межледниковый период по климату прошел этапы от континентально умеренного (близкого к современному) до теплого, с средиземноморским климатом. В нашем крае вначале доминировали березы, сосна и ель, а потом снова зазеленели теплолюбивые дубы, буки и грабы. В болотах росла кувшинка бразения, которую сегодня встретишь лишь в Лаосе, Камбодже или Вьетнаме. В конце межледникового периода снова доминировали березово-хвойные леса.
Эту идиллию испортило Валдайское оледенение. Лед со Скандинавского полуострова вновь устремился на юг. В этот раз ледник не дошел до Подмосковья, но изменил наш климат на субарктический. На многие сотни километров, в том числе и по территории нынешнего Каширского района и сельского поселения Знаменское, протянулась степь-тундра, с высохшей травой и редким кустарником, карликовыми березами и полярными ивами. Эти условия были идеальны для мамонтовой фауны и для первобытного человека, который тогда уже обитал на границах ледника.
В период последнего Валдайского оледенения сформировались первые террасы рек. Окончательно оформилась гидрография нашего края.
Следы ледниковых эпох встречаются в Каширском районе часто, но их трудно выделить. Разумеется, большие каменные валуны - это следы ледниковой деятельности днепровского оледенения. Их притащил лед из Скандинавии, Финляндии и с Кольского полуострова. Самые древние следы ледника - это моренный или валунный суглинок, представляющий из себя беспорядочную смесь глины, песка, камней бурого цвета.
Третья группа ледниковых пород - пески, получившиеся в результате разрушения моренных слоев водой. Это пески с крупной галькой и камнями и пески однородные. Их можно наблюдать на Оке. К ним относятся и Белопесоцкие пески. Часто встречающиеся в долинах рек, ручьев, в оврагах слои кремневой и известковой щебенки являются следами русла древних рек и ручьев.
С новым потеплением наступила геологическая эпоха голоцена (он начался 11 тысяч 400 лет назад), продолжающегося и в наши дни. Окончательно сформировались современные речные поймы. Мамонтовая фауна вымерла, а на месте тундры появились леса (вначале еловые, затем березовые, а позднее смешанные). Флора и фауна нашего края приобрела черты современной - той, что мы видим сегодня. При этом левый и правый берега Оки до сих пор сильно отличаются своим лесным покровом. Если на правом берегу преобладают смешанные леса и много открытых участков, то на левом берегу доминируют сплошные хвойные леса - это следы ледниковых и межледниковых изменений климата. На нашем берегу Оки ледник оставил меньше следов и климат у нас был несколько мягче, чем на левом берегу Оки.
Геологические процессы продолжаются и сегодня. Земная кора в Подмосковье за последние 5 тысяч лет поднимается лишь слегка, со скоростью 10 см в столетие. Формируется современный аллювий Оки и других рек нашего края. К чему это приведет спустя миллионы лет, мы можем только догадываться, ибо, кратко познакомившись с геологической историей нашего края, мы смело можем повторить русскую поговорку: «Человек предполагает, а Бог располагает». Поговорка эта особенно актуальна, после того как мы в этой главе убедились, что человеческая история - это песчинка в истории нашей планеты.
Одна из загадок Земли, наравне с возникновением на ней Жизни и вымирания в конце мелового периода динозавров, это – Великие Оледенения.
Есть мнение, что оледенения повторяются на Земле регулярно через каждые 180-200 млн. лет. Следы оледенений известны в отложениях, которым миллиарды и сотни миллионов лет назад – в кембрии, в карбоне, в триасе-перми. О том, что они могли быть, «говорят» так называемые тиллиты , породы, очень схожие с мореной последнего, точнее последних оледенений . Это остатки древних отложений ледников, состоящие из глинистой массы с включениями крупных и мелких исцарапанных при движении (штрихованных) валунов.
Отдельные слои тиллитов , находимых даже в экваториальной Африке, могут достигать мощности десятков и даже сотен метров !
Признаки оледенений обнаружены на разных материках – в Австралии, Южной Америке, Африке и Индии , что используется учёными для реконструкции палеоконтинентов и часто приводят в подтверждение теории тектоники плит .
Следы древних оледенений свидетельствуют о том, что оледенения континентального масштаба – это совсем не случайный феномен, это закономерное природное явление, возникающее при определённых условиях .
Последний из ледниковых периодов начался почти миллион лет назад, в четвертичное время, или четвертичный период, плейстоцен и ознаменовался обширным распространением ледников – Великим Оледенением Земли .
Под мощными, многокилометровыми покровами льда оказались северная часть Северо-Американского континента – Северо-Американский ледниковый щит, достигавший мощности до 3.5 км и простиравшийся примерно до 38° северной широты и значительная часть Европы, на который (ледниковый покров мощностью до 2.5-3 км). На территории России ледник спускался двумя громадными языками по древним долинам Днепра и Дона.
Частично оледенение охватило и Сибирь – там в основном было так называемое «горно-долинное оледенение», когда ледники не покрывали все пространство мощным покровом, а были лишь в горах и предгорных долинах, что связано с резко-континентальным климатом и низкими температурами в Восточной Сибири. А вот почти вся Западная Сибирь, в связи с тем, что прошло подпруживание рек, и прекратился их сток в Северный Ледовитый океан, оказалось под водой, и представляла собой огромное море-озеро.
В Южном полушарии подо льдом, как и сейчас, находился весь Антарктический материк.
В период максимального распространения четвертичного оледенения ледники покрывали свыше 40 млн. км 2 – около четверти всей поверхности материков.
Достигнув наибольшего развития около 250 тыс. лет назад, четвертичные ледники Северного полушария стали постепенно сокращаться, так как период оледенения не был непрерывным на протяжении всего четвертичного периода .
Существуют и геологические, и палеоботанические и иные доказательства того, что ледники несколько раз исчезали, сменяясь эпохами межледниковья , когда климат был даже теплее современного. Однако на смену теплым эпохам вновь приходили похолодания, и ледники распространялись вновь.
Сейчас мы живем, по-видимому, в конце четвертой эпохи четвертичного оледенения.
А вот в Антарктиде оледенение возникло за миллионы лет до того времени, как появились ледники в Северной Америке и Европе. Помимо климатических условий этому способствовал издавна существовавший здесь высокий материк. Кстати сейчас, в связи с тем, что толща ледника Антарктиды огромна, материковое ложе «ледяного континента» кое-где находится ниже уровня моря…
В отличие от древних ледниковых покровов Северного полушария, которые то исчезали, то возникали вновь, Антарктический ледниковый покров мало изменялся в своих размерах. Максимальное оледенение Антарктиды было больше современного всего в полтора раза по объему, и ненамного больше по площади.
Теперь о гипотезах… Гипотез, почему происходят оледенения, и были ли они вообще, сотни, если не тысячи!
Обычно выдвигаются следующие основные научные гипотезы :
- Вулканические извержения, приводящие к уменьшению прозрачности атмосферы и похолоданию на всей территории Земли;
 - Эпохи орогенеза (горообразования);
 - Уменьшение количества углекислого газа в атмосфере, что снижает «парниковый эффект» и приводит к похолоданию;
 - Цикличность активности Солнца;
 - Изменения положения Земли относительно Солнца.
 
Но, тем не менее, причины оледенений окончательно так и не выяснены!
Предполагают, например, что оледенение начинается, когда при увеличении расстояния между Землей и Солнцем, вокруг которого она вращается по слегка вытянутой орбите, уменьшается количество солнечного тепла, получаемого нашей планетой, т.е. оледенение наступает при прохождении Землей точки орбиты, наиболее далеко отстоящей от Солнца.
Однако астрономы считают, что одних лишь изменений количества солнечного излучения, попадающего на Землю, недостаточно, чтобы начался ледниковый период. Видимо, имеет значение и колебание активности самого Солнца, что является периодическим, циклическим процессом, и изменяется через каждые 11-12 лет, с цикличностью 2-3 года и 5-6 лет. А самые большие циклы активности, как установил советский географ А.В. Шнитников – примерно 1800-2000 лет.
Есть также и гипотеза, что возникновение ледников связано с некими участками Вселенной, через которые проходит наша Солнечная система, двигаясь со всей Галактикой, то ли заполненные газом, то ли «облаками» космической пыли. И вероятно, что «космическая зима» на Земле наступает, когда земной шар находится в точке, наиболее удаленной от центра нашей Галактики, где имеются скопления «космической пыли» и газа.
Следует отметить, что обычно перед эпохами похолоданий всегда «идут» эпохи потепления, и есть, например, гипотеза, что Северный Ледовитый океан, вследствие потепления, временами полностью освобождается ото льда (между прочим, это происходит и сейчас), с поверхности океана усиленное испарение, потоки влажного воздуха направляются к полярным областям Америки и Евразии, и над холодной поверхностью Земли выпадает снег, не успевающий растаять за короткое и холодное лето. Так на материках и возникают ледниковые покровы.
Но, когда в результате превращения части воды в лед, уровень Мирового океана понижается на десятки метров, тёплый Атлантический океан перестаёт сообщаться с Северным Ледовитым океаном, и тот снова постепенно покрывается льдом, испарение с его поверхности резко прекращается, снега на материках выпадает всё меньше и меньше, «питание» ледников ухудшается, и ледниковые покровы начинают таять, а уровень Мирового океана вновь повышается. И снова Северный Ледовитый океан соединяется с Атлантическим, и снова ледяной покров начал постепенно исчезать, т.е. цикл развития очередного оледенения начинается заново.
Да, все эти гипотезы вполне возможны , но пока ни одна из них не может быть подтверждена серьезными научными фактами.
Поэтому одна из главных, основополагающих гипотез – это изменение климата на самой Земле, что связано с вышеупомянутыми гипотезами .
Но вполне возможно, что процессы оледенения связаны с совокупным воздействием различных природных факторов , которые могли действовать и совместно, и сменять друг друга , и важно то, что, начавшись, оледенения, как «заведённые часы», уже развиваются самостоятельно, по своим законам, иногда даже «игнорируя» некоторые климатические условия и закономерности.
И ледниковый период, начавшийся в Северном полушарии около 1 млн. лет назад, ещё не завершился , и мы, как уже было сказано, живем в более тёплом промежутке времени, в межледниковье .
На протяжении всей эпохи Великих Оледенений Земли льды то отступали, то вновь надвигались. На территории и Америки, и Европы было, по-видимому, четыре глобальные ледниковые эпохи, между которыми были сравнительно теплые периоды.
А вот полное отступление льдов произошло всего лишь около 20 – 25 тыс. лет назад , но в некоторых районах льды задержались ещё дольше. Из района современного Санкт-Петербурга ледник отступил только 16 тыс. лет назад, а кое-где на Севере небольшие остатки древнего оледенения сохранились и до сих пор.
Отметим, что современные ледники не могут идти ни на какое сравнение с древним оледенением нашей планеты – они занимают лишь около 15 млн. кв. км, т. е. менее одной тридцатой части земной поверхности.
Как же можно определить, а было ли в данном месте Земли оледенение, или нет? Обычно это достаточно легко определить по своеобразным формам географического рельефа и горным породам.
На полях и в лесах России часто встречаются большие скопления огромных валунов, гальки, глыб, песков и глин. Они обычно лежат прямо на поверхности, но их можно увидеть и в обрывах оврагов, и в склонах речных долин.
Кстати, одним первым, кто попытался объяснить, как образовались эти отложения, был выдающий географ и анархист-теоретик, князь Петр Алексеевич Кропоткин. В своем труде «Исследования о ледниковом периоде» (1876 г.) он утверждал, что территорию России некогда покрывали огромные ледяные поля.
Если мы посмотрим на физико-географическую карту Европейской России, то в расположении холмов, возвышенностей, котловин и долин крупных рек можно заметить некоторые закономерности. Так, например Ленинградская и Новгородская области с юга и востока как бы ограничены Валдайской возвышенностью , имеющей вид дуги. Это как раз тот рубеж, где в далёком прошлом остановился огромный ледник, наступавший с севера.
К юго-востоку от Валдайской возвышенности расположена слегка извилистая Смоленско-Московская возвышенность, протянувшаяся от Смоленска до Переславля-Залесского. Это ещё одна из границ распространения покровных ледников.
На Западно-Сибирской равнине также видны многочисленные холмистые извилистые возвышенности – «гривы», также свидетельства деятельности древних ледников, точнее ледниковых вод. Много следов остановок движущихся ледников, стекавших по склонам гор в крупные котловины, обнаружено в Средней и Восточной Сибири.
Трудно представить себе льды толщиной в несколько километров на месте нынешних городов, рек и озёр, но, тем не менее, ледниковые плато не уступали по высоте Уралу, Карпатам или Скандинавским горам. Эти гигантские и к тому же подвижные массы льда оказывали влияние на всю природную среду – рельеф, ландшафты, речной сток, почвы, растительность и животный мир.
Следует отметить, что на территории Европы и Европейской части России от геологических эпох, предшествующих четвертичному периоду – палеогена (66-25 млн. лет) и неогена (25-1.8 млн. лет) практически не сохранилось никаких горных пород, они были полностью размыты и переотложены во время четвертичного периода, или как его часто называет, плейстоцена.
Ледники зародились и двигались со стороны Скандинавии, Кольского полуострова, Полярного Урала (Пай-Хоя) и островов Северного Ледовитого океана . И практически все геологические отложения, которые мы видим на территории Москвы – морена, точнее моренные суглинки, пески различного происхождения (водно-ледниковые, озерные, речные), огромные валуны, а также покровные суглинки – все это свидетельство мощного воздействия ледника .
На территории Москвы можно выделить следы трех оледенений (хотя насчитывается их гораздо больше – разные исследователи выделяют от 5 до нескольких десятков периодов наступлений и отступлений льда):
- окское (около 1 млн. лет назад),
 - днепровское (около 300 тыс. лет назад),
 - московское (примерно 150 тыс. лет назад).
 
Валдайский же ледник (исчез всего-навсего 10 – 12 тыс. лет назад) до Москвы «не дошел», и для отложений этого периода характерны водно-ледниковые (флювио-гляциальные) отложения – в основном пески Мещерской низменности.
А сами названия ледников соответствуют названиям тех мест, до которых доходили ледники – до Оки, Днепра и Дона, Москва-реки, Валдая, и т. п.
Так как мощность ледников достигала почти 3 км, можно себе представить, какую колоссальную работу он совершал! Некоторые возвышенности и холмы на территории Москвы и Московской области – это мощные (до 100 метров!) отложения, которые «принес» ледник.
Наиболее известны, например Клинско-Дмитровская моренная гряда , отдельные возвышенности на территории Москвы (Воробьевы горы и Теплостанская возвышенность ). Огромные валуны, весом до нескольких тонн (например, Девичий камень в Коломенском) – тоже результат работы ледника.
Ледники сглаживали неровности рельефа: разрушали возвышенности и кряжи, а образовавшимися обломками горных пород заполняли понижения - долины рек и озёрные котловины, перенося огромные массы каменных обломков на расстояние более 2 тыс. км.
Однако огромные массы льда (учитывая его колоссальную толщину) столь сильно давили на подстилающие горные породы, что даже самые крепкие из них не выдерживали и разрушались.
Их обломки вмораживались в тело движущегося ледника и, словно наждаком, на протяжении десятков тысяч лет царапали скалы, сложенные гранитами, гнейсами, песчаниками и другими породами, вырабатывая в них углубления. До сих пор сохранились многочисленные ледниковые борозды, «шрамы» и ледниковая полировка на гранитных скалах, а также длинные ложбины в земной коре, занятые впоследствии озёрами и болотами. Примером могут служить бесчисленные впадины озёр Карелии и Кольского полуострова.
Но ледники выпахивали на своём пути далеко не все горные породы. Разрушению подвергались в основном те области, где ледниковые покровы зарождались, росли, достигали толщины более 3 км и откуда они начинали своё движение. Главным центром оледенения в Европе была Фенноскандия, включающая Скандинавские горы, плоскогорья Кольского полуострова, а также плоскогорья и равнины Финляндии и Карелии.
По пути своего продвижения лёд насыщался обломками разрушенных горных пород, и они постепенно скапливались как внутри ледника, так и под ним. Когда лёд таял, массы обломков, песка и глины оставались на поверхности. Особенно активным был этот процесс, когда движение ледника прекращалось и начиналось таяние его обломков.
У края ледников, как правило, возникали водные потоки, двигавшиеся по поверхности льда, в теле ледника и под толщей льда. Постепенно они сливались, образуя целые реки, которые за тысячи лет формировали узкие долины и перемывали множество обломочного материала.
Как уже было сказано, формы ледникового рельефа весьма разнообразны. Для моренных равнин характерно множество гряд и валов, обозначающих места остановок движущихся льдов и основной формой рельефа среди них являются валы конечных морен, обычно это невысокие дугообразные гряды, сложенные песком и глиной с примесью валунов и гальки. Понижения между грядами часто бывают заняты озёрами. Иногда среди моренных равнин можно увидеть отторженцы – глыбы размером в сотни метров и весом в десятки тонн, гигантские куски ложа ледника, перенесённые им на огромные расстояния.
Ледники нередко перегораживали течения рек и возле таких «плотин» возникали огромные озёра, заполняющие понижения речных долин и впадины, что часто меняло направление стока рек. И хотя такие озёра существовали сравнительно недолго (от тысячи до трех тысяч лет), на их дне успевали накапливаться озёрные глины , слоистые осадки, посчитав слои которых, можно четко выделить периоды зимы и лета, а также сколько лет эти осадки накапливались.
В эпоху, последнего, валдайского оледенения возникли Верхневолжские приледниковые озёра (Молого-Шекснинское, Тверское, Верхне-Моложское и др). Сначала их воды имели сток на юго-запад, но с отступанием ледника они получили возможность стока на север. Следы Молого-Шекснинского озера остались в виде террас и береговых линий на высоте около 100 м.
Весьма многочисленны следы древних ледников в горах Сибири, Урала, Дальнего Востока. В результате древнего оледенения, 135-280 тысяч лет назад, появились острые пики гор – «жандармы», на Алтае, в Саянах, Прибайкалье и Забайкалье, на Становом нагорье. Здесь преобладал так называемый «сетчатый тип оледенения», т.е. если бы можно было посмотреть с высоты птичьего полёта, то можно было бы увидеть, как на фоне ледников возвышаются свободные ото льда плато и вершины гор.
Следует отметить, что в периоды ледниковых эпох на части территории Сибири располагались довольно крупные ледяные массивы, например на архипелаге Северная Земля, в горах Бырранга (полуостров Таймыр), а также на плато Путорана на севере Сибири .
Обширное горно-долинное оледенение было 270-310 тысяч лет назад на Верхоянском хребте, Охотско-Колымском нагорье и в горах Чукотки . Эти области принято считать центрами оледенений Сибири .
Следы этих оледенений – многочисленные чашеобразные углубления горных вершин – цирки или кары , огромные моренные валы и озёрные равнины на месте вытаявшего льда.
В горах так же, как и на равнинах, возникали озёра у ледяных плотин, периодически озёра переполнялись, и гигантские массы воды через невысокие водоразделы с невероятной скоростью устремлялись в соседние долины, врезаясь в них и образуя огромные каньоны и ущелья. Например на Алтае, в Чуйско-Курайской впадине, до сих пор сохранились «гигантская рябь», «котлы высверливания», ущелья и каньоны, огромные глыбы-отторженцы, «сухие водопады» и другие следы потоков воды, вырывавшихся из древних озёр «всего- навсего» 12-14 тыс. лет назад.
«Вторгаясь» с севера на равнины Северной Евразии, ледниковые покровы то проникали далеко на юг по понижениям рельефа, то останавливались у каких-либо препятствий, например, возвышенностей.
Наверное, пока нельзя точно определить, какое из оледенений было «самым великим», однако, известно, например, что валдайский ледник по своей площади резко уступал днепровскому.
Различались и ландшафты у границ покровных ледников. Так, в окскую эпоху оледенения (500-400 тыс. лет назад) к югу от них располагалась полоса арктических пустынь шириной около 700 км – от Карпат на западе до Верхоянского хребта на востоке. Ещё дальше, на 400-450 км южнее, простиралась холодная лесостепь , где могли расти только такие неприхотливые деревья, как лиственницы, берёзы и сосны. И лишь на широте Северного Причерноморья и Восточного Казахстана начинались сравнительно тёплые степи и полупустыни.
В эпоху днепровского оледенения ледники были существенно больше. Вдоль окраины ледяного покрова тянулась тундростепь (сухая тундра) с очень суровым климатом. Среднегодовая температура приближалась к минус 6°С (для сравнения: в Подмосковье среднегодовая температура в настоящее время около +2,5°С).
Открытое пространство тундры, где зимой было мало снега и стояли сильные морозы, растрескивалось, образуя, так называемые «мерзлотные полигоны», которые в плане напоминают по форме клин. Их и называют «ледовые клинья, причём в Сибири они часто достигают высоты десяти метров! Следы этих «ледовых клиньев» в древних ледниковых отложениях «говорит» о суровом климате. Следы мерзлотного, или криогенного воздействия заметы и в песках, это часто нарушенные, как бы «рваные» слои, часто с высоким содержанием минералов железа.
Водно-ледниковые отложения со следами криогенного воздействия
Последнее «Великое Оледенение» изучается уже более 100 лет. Многие десятки лет упорного труда выдающихся исследователей ушли на сбор данных о его распространении на равнинах и в горах, на картирование конечно-моренных комплексов и следов ледниково-подпрудных озёр, ледниковых шрамов, друмлинов, участков «холмистой морены».
Правда есть и исследователи, которые вообще отрицают древние оледенения, и считают ледниковую теорию ошибочной. По их мнению, никакого оледенения вообще не было, а было «холодное море, по которому плавали айсберги», а все ледниковые отложения – это лишь донные осадки этого мелководного моря!
Другие исследователи, «признавая общую справедливость теории оледенений», тем не менее, сомневаются в правильности вывода о грандиозных масштабах оледенений прошлого, и особенно сильное недоверие вызывает у них вывод о ледниковых щитах, налегавших на полярные континентальные шельфы, они считают, что были «небольшие ледниковые шапки арктических архипелагов», «голая тундра» или «холодные моря», а в Северной Америке, где уже давно восстановлен крупнейший в Северном полушарии «лаврентьевский ледниковый щит», были лишь «группы ледников, слившихся основаниями куполов».
Для Северной Евразии этими исследователями признаются лишь Скандинавский ледниковый щит и изолированные «ледниковые шапки» Полярного Урала, Таймыра и плато Путорана, а в горах умеренных широт и Сибири – только долинные ледники.
А некоторые учёные, наоборот, «реконструируют» в Сибири «гигантские ледниковые покровы», по своим размерам и по строению не уступающие Антарктическому.
Как мы уже отмечали, в Южном полушарии Антарктический ледниковый покров распространялся на весь материк, включая его подводные окраины, в частности области морей Росса и Уэдделла.
Максимальная высота ледникового покрова Антарктиды составляла 4 км, т.е. была близка к современной (сейчас около 3.5 км), площадь льда возрастала до почти 17 миллионов квадратных километров, а общий объём льда достигал 35-36 миллионов кубических километров.
Ещё два больших ледниковых покрова были в Южной Америке и Новой Зеландии.
Патагонский ледниковый покров располагался в Патагонских Андах , их предгорьях и на соседнем континентальном шельфе. О нём сегодня напоминают живописный фьордовый рельеф чилийского побережья и остаточные ледниковые покровы Анд.
«Южноальпийский комплекс» Новой Зеландии – был уменьшенной копией Патагонского. Он имел ту же форму и так же выдвигался на шельф, на побережье им выработана система похожих фьордов.
В Северном полушарии в периоды максимального оледенения мы бы увидели огромный Арктический ледниковый покров , возникавший в результате объединения Североамериканского и Евразийского покровов в единую ледниковую систему, причём важную роль играли плавучие шельфовые ледники, особенно Центрально-Арктический, покрывавший всю глубоководную часть Северного Ледовитого океана.
Крупнейшими элементами Арктического ледникового покрова были Лаврентьевский щит Северной Америки и Карский щит арктической Евразии , они имели форму гигантских плоско-выпуклых куполов. Центр первого из них располагался над юго-западной частью Гудзонова залива, вершина поднималась на высоту более 3 км, а его восточный край выдвигался до внешнего края континентального шельфа.
Карский ледниковый щит занимал всю площадь современных Баренцева и Карского морей, его центр лежал над Карским морем, а южная краевая зона покрывала весь север Русской равнины, Западной и Средней Сибири.
Из других элементов Арктического покрова особого внимания заслуживает Восточно-Сибирский ледниковый щит , который распространялся на шельфы морей Лаптевых, Восточно-Сибирского и Чукотского и был больше Гренландского ледникового щита . Он оставил следы в виде крупных гляциодислокаций Новосибирских островов и района Тикси , с ним же связаны и грандиозные ледниково-эрозионные формы острова Врангеля и Чукотского полуострова .
Итак, последний ледниковый покров Северного полушария, состоял из более чем десятка больших ледниковых щитов и множества более мелких, а также из объединявших их шельфовых ледников, плававших в глубоком океане.
Промежутки времени, в которые ледники исчезали, или сокращались на 80-90%, называют межледниковьями. Освободившиеся ото льда ландшафты в условиях относительно тёплого климата преображались: тундра отступала к северному побережью Евразии, а тайга и широколиственные леса, лесостепи и степи занимали положение, близкое к современному.
Таким образом, на протяжении последнего миллиона лет природа Северной Евразии и Северной Америки неоднократно меняла свой облик.
Валуны, щебень и песок, вмороженные в придонные слои движущегося ледника, выполняя роль гигантского «напильника», сглаживали, шлифовали, царапали граниты и гнейсы, а подо льдом формировались своеобразные толщи валунных суглинков и песков, отличающиеся высокой плотностью, связанной с воздействием ледниковой нагрузки – основная, или донная морена.
Так как размеры ледника определяются равновесием между количеством ежегодно выпадающего на него снега, который и превращается в фирн, а потом в лёд, и того что, не успевает растаять и испариться за теплые сезоны, то при потеплении климата края ледников отступают на новые, «равновесные рубежи». Концевые части ледниковых языков перестает двигаться и постепенно тают, а включенные в лёд валуны, песок и суглинок высвобождаются, образуя вал, повторяющий очертания ледника – конечную морену ; другая же часть обломочного материала (в основном песок и глинистые частицы) выносится потоками талой воды и отлагается вокруг в виде флювиогляциальных песчаных равнин (зандров ).
Подобные потоки действуют и в глубине ледников, заполняя флювиогляциальным материалом трещины и внутриледниковые каверны. После стаивания ледниковых языков с такими заполненными пустотами на земной поверхности, поверх вытаявшей донной морены остаются хаотические нагромождения холмов различной формы и состава: яйцевидные (при виде сверху) друмлины , вытянутые, как железнодорожные насыпи (вдоль оси ледника и перпендикулярно конечным моренам) озы и неправильной формы камы .
Очень четко все эти формы ледникового ландшафта представлены в Северной Америке: граница древнего оледенения здесь маркирована конечно-моренным валом с высотами до пятидесяти метров, протянувшимся поперек всего континента от восточного его побережья до западного. К северу от этой «Великой ледниковой стены» ледниковые отложения представлены в основном мореной, а к югу от нее – «плащом» флювиогляциальных песков и галечников.
Как для территории Европейской части России выделены четыре эпохи оледенения, так и для Центральной Европы также выделены четыре ледниковые эпохи, названные по соответствующим альпийским речкам – гюнц, миндель, рисс и вюрм , а в Северной Америке – небраскское, канзасское, иллинойсское и висконсинское оледенения.
Климат перигляциальных (окружающих ледник) территорий был холодным и сухим, что полностью подтверждается палеонтологическими данными. В этих ландшафтах возникает весьма специфическая фауна с сочетанием криофильных (холодолюбивых) и ксерофильных (сухолюбивых) растений – тундростепь.
Сейчас похожие природные зоны, сходные с перигляциальными, сохранились в виде так называемых реликтовых степей – островков среди таежного и лесотундрового ландшафта, например, так называемые аласы Якутии, южные склоны гор северо-восточной Сибири и Аляски, а также в холодные засушливые высокогорья Центральной Азии.
Тундростепь отличалась тем, что её травяной ярус формировали в основном не мхи (как в тундре), а злаки , и именно здесь складывался криофильный вариант травянистой растительности с очень высокой биомассой пастбищных копытных и хищников – так называемой «мамонтовой фауной» .
В её составе были причудливо смешаны различные виды животных, как характерных для тундры – северный олень, олень-карибу, овцебык, лемминги , для степей – сайгак, лошадь, верблюд, бизон, суслики , а также мамонты и шерстистые носороги, саблезубый тигр – смилодон, и гигантская гиена .
Следует отметить, что многие климатические изменения повторялись как бы «в миниатюре» на памяти человечества. Это так называемые «Малые ледниковые периоды» и «межледниковья».
Например, во время так называемого «Малого ледникового периода» с 1450 по 1850 года ледники повсеместно наступали, и их размеры превосходили современные (снежный покров появлялся, например, в горах Эфиопии, где его сейчас нет).
А в предшествовавший «Малому ледниковому периоду» Атлантический оптимум (900-1300 г.г.) ледники, наоборот, сократились, и климат был заметно мягче нынешнего. Вспомним, что именно в эти времена викинги назвали Гренландию «Зеленой землей», и даже заселили её, а также доходили на своих ладьях до побережья Северной Америки и острова Ньюфаундленд. А новгородские купцы-ушкуйники проходили «Северным морским путем» до Обской губы, основав там город Мангазею.
А последнее отступание ледников, начавшееся свыше 10 тысяч лет назад, хорошо осталось в памяти людей, отсюда и легенды о Всемирном потопе, так огромнее количество талых вод устремилось вниз, на юг, частыми стали дожди и наводнения.
В далёком прошлом рост ледников происходил в эпохи с пониженной температурой воздуха и увеличенной увлажненностью, такие же условия складывались и в последние века прошлой эры, и в середине прошлого тысячелетия.
А около 2.5 тысяч лет назад началось значительное похолодание климата, арктические острова покрылись ледниками, в странах Средиземноморья и Причерноморья на рубеже эр климат был более холодным и влажным, чем сейчас.
В Альпах в I тысячелетии до н. э. ледники выдвинулись на более низкие уровни, загромоздили горные перевалы льдами и разрушили некоторые высоко расположенные селения. Именно в эту эпоху резко активизируются и растут ледники на Кавказе.
Но к концу I тысячелетия опять началось потепление климата, отступили горные ледники в Альпах, на Кавказе, в Скандинавии и Исландии.
Климат начал снова серьезно меняться лишь в XIV веке, в Гренландии стали быстро расти ледники, летнее оттаивание грунтов становилось всё более кратковременным, и к концу века здесь прочно установилась вечная мерзлота.
С конца XV века начался рост ледников во многих горных странах и полярных районах и после сравнительно теплого XVI века наступили суровые столетия, и получившие название «Малого ледникового периода». На юге Европы часто повторялись суровые и продолжительные зимы, в 1621 и 1669 годах замерзал пролив Босфор, а в 1709 году у берегов замерзало Адриатическое море. Но «Малый ледниковый период» завершился во второй половине XIX века и началась сравнительно теплая эпоха, которая продолжается и сейчас.
Отметим, что потепление XX столетия особенно четко выражено в полярных широтах Северного полушария, а колебания ледниковых систем характеризуются процентной долей наступающих, стационарных и отступающих ледников.
Так, например, для Альп имеются данные, охватывающие всё прошедшее столетие. Если доля наступающих альпийских ледников в 40-50-х годах ХХ века была близка к нулю, то в середине 60-х ХХ века здесь наступало около 30%, а в конце 70-х ХХ века – 65-70% обследованных ледников.
Подобное их состояние свидетельствует о том, что антропогенное (техногенное) увеличение содержания двуокиси углерода, метана и других газов и аэрозолей в атмосфере в XX столетии никак не повлияло на нормальный ход глобальных атмосферных и ледниковых процессов. Однако в конце прошлого, ХХ века повсюду в горах ледники стали отступать, стали таять и льды Гренландии, что связано с потеплением климата, и что особенно усилилась в 1990-х годах.
Известно, что возросшее ныне техногенное количество выбросов в атмосферу углекислого газа, метана, фреона и различных аэрозолей вроде бы как способствует уменьшению солнечной радиации. В связи с этим и появились «голоса» сначала журналистов, потом политиков, а потом и учёных о начале «новой ледниковой эпохи». Экологи «забили тревогу», опасаясь «грядущего антропогенного потепления» из-за постоянного роста углекислого газа и иных примесей в атмосфере.
Да, хорошо известно, что увеличение СО 2 ведет к увеличению количества задерживаемого тепла и тем самым повышает температуру воздуха у поверхности Земли, образуя пресловутый «парниковый эффект».
Такое же воздействие оказывают и некоторые другие газы техногенного происхождения: фреоны, оксиды азота и оксиды серы, метан, аммиак. Но, тем не менее, далеко не вся двуокись углерода остается в атмосфере: 50-60% промышленных выбросов СО 2 попадают в океан, где быстро усваиваются животными (кораллами в первую очередь), и конечно же усваиваются и растениями – вспомним процесс фотосинтеза: растения поглощают углекислый газ и выделяют кислород! Т.е. чем больше углекислого газа – тем лучше, тем выше процент кислорода в атмосфере! Кстати, такое уже было в истории Земли, в каменноугольном периоде… Поэтому даже многократный рост концентрации СО 2 в атмосфере не сможет привести к такому же многократному росту температуры, так как существует определённый природный механизм регулирования, резко замедляющий парниковый эффект при высоких концентрациях СО 2 .
Так что все многочисленные «научные гипотезы» о «парниковом эффекте», «повышении уровня Мирового океана», «изменения течения Гольфстрима», и естественно «грядущего Апокалипсиса» большей частью навязаны нам «сверху», политиками, некомпетентными учеными, неграмотными журналистами или просто аферистами от науки. Чем больше запугаешь население – тем проще сбывать товар и управлять…
А на самом деле происходит обычный природный процесс – один этап, одна климатическая эпоха сменяется другой, и ничего странного в этом нет… А то что происходят природные катастрофы, и что их якобы стало больше – смерчей, наводнений и прочее – так еще 100-200 лет назад огромные территории Земли были просто незаселенны! А сейчас людей более 7 млрд., и живут они часто там, где именно и возможны наводнения и смерчи – по берегам рек и океанов, в пустынях Америки! Тем более, вспомним, что природные катаклизмы были всегда, и даже губили целые цивилизации!
А что касается мнения учёных, на которые так любят ссылаться и политики, и журналисты… Ещё в 1983 году американские социологи Рэндалл Коллинз и Сэл Рестиво в своей знаменитой статье «Пираты и политики в математике» написали открытым текстом: «…Не существует неизменного набора норм, которые руководят поведением ученых. Неизменна лишь деятельность ученых (и соотносимых с ними других типов интеллектуалов), направленная на стяжание богатства и славы, а также на получение возможности контролировать поток идей и навязывать свои собственные идеи другим… Идеалы науки не предопределяют научного поведения, но возникают из борьбы за индивидуальный успех в различных условиях соревнования …».
И ещё немного о науке… Различные крупные компании часто выделяют гранты на проведение так называемых «научных исследований» в тех или иных областях, но возникает вопрос – насколько человек, проводящий исследование, компетентен в данной области? Почему из сотен учёных был выбран именно он?
И если некому учёному, «некая организация» заказывает например «некое исследование по безопасности ядерной энергетики», то, само собой разумеется, что этот учёный будет вынужден «прислушиваться» к заказчику, так как у него есть «вполне определенные интересы», и понятно, что «свои выводы» он, скорее всего, будет «подлаживать» под заказчика, так как главный вопрос – это уже не вопрос научных исследований – а что желает заказчик получить, какой результат . И если результат заказчика не устроит , то и этого ученого больше не пригласят , и ни в одном «серьезном проекте», т.е. «денежном», он более участвовать не будет, так как пригласят другого ученого, более «покладистого»… Многое, безусловно, зависит и от гражданской позиции, и профессионализма, и репутации как ученого… Но не будем забывать, сколько в России «получают» ученые… Да в мире, в Европе и в США, ученый живет в основном на гранты… А любой учёный тоже «хочет кушать».
Кроме того – данные и мнения одного ученого, пусть и крупного специалиста в своей области – это еще не факт! А вот если исследования подтверждаются какими-нибудь научными группами, институтами, лабораториями, то лишь тогда исследования могут быть достойны серьёзного внимания .
Если конечно эти «группы», «институты» или «лаборатории» не финансировались заказчиком данного исследования или проекта…
А.А. Каздым,
кандидат геолого-минералогических наук, член МОИП
ВАМ ПОНРАВИЛСЯ МАТЕРИАЛ? ПОДПИСЫВАЙТЕСЬ НА НАШУ EMAIL-РАССЫЛКУ:
Каждый понедельник, среду и пятницу мы будем присылать вам на email дайджест самых интересных материалов нашего сайта.

Мамонтовая фауна